Downloaded by CARLETON UNIVERSITY on March 18, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.A34838

JOURNAL OF SPACECRAFT AND ROCKETS
Vol. 58, No. 2, March—April 2021

Deep Reinforcement Learning for Spacecraft Proximity
Operations Guidance

Kirk Hovell% and Steve Ulricht
Carleton University, Ottawa, Ontario K18 5B6, Canada

https://doi.org/10.2514/1.A34838

This paper introduces a guidance strategy for spacecraft proximity operations, which leverages deep reinforcement
learning, a branch of artificial intelligence. This technique enables guidance strategies to be learned rather than
designed. The learned guidance strategy feeds velocity commands to a conventional controller to track. Control
theory is used alongside deep reinforcement learning to lower the learning burden and facilitate the transfer of the
learned behavior from simulation to reality. In this paper, a proof-of-concept spacecraft pose tracking and docking
scenario is considered, in simulation and experiment, to test the feasibility of the proposed approach. Results show
that such a system can be trained entirely in simulation and transferred to reality with comparable performance.

I. Introduction

UTONOMOUS spacecraft rendezvous and docking operations

have become an active research area in recent decades. Appli-
cations, such as on-orbit servicing, assembly, and debris capture [1],
require the capability for a chaser spacecraft to autonomously and
safely maneuver itself in proximity to a potentially uncooperative
target object. A common strategy is pose tracking (i.e., synchronizing
the translational and rotational motion of the chaser with respect to
the target, such that there is no relative motion between the two
objects). Only then does the chaser perform its final approach and
capture or dock with the target. Guidance and control algorithms have
been developed for this purpose. For example, a guidance and control
scheme for capturing a tumbling debris with a robotic manipulator
was developed by Aghili [2]. Wilde et al. [3] developed inverse
dynamics models to generate guidance paths, and included exper-
imental validation. Ma et al. [4] applied feedforward optimal control
for orienting a chaser spacecraft at a constant relative position
with respect to a tumbling target. A variety of dual quaternion
approaches have been explored [5—7]. Pothen and Ulrich [8,9] used
the Udwadia—Kalaba equation to formulate the close-range rendez-
vous problem, and included experimental validation. Lyapunov vec-
tor fields have been used to command docking with an uncooperative
target spacecraft by Hough and Ulrich [10].

The currently developed guidance and control techniques pre-
sented previously are handcrafted to solve a particular task and
require significant engineering effort. As more complex tasks are
introduced, the engineering effort needed to handcraft solutions may
become infeasible. For example, developing a guidance law for a
chaser spacecraft to detumble a piece of spinning space debris, when
the two objects are connected via flexible tethers, does not have a
clear solution that can be handcrafted. Motivated by more difficult
guidance tasks, this paper introduces a new approach that builds upon
a branch of artificial intelligence, called deep reinforcement lear-
ning, to augment the guidance capabilities of spacecraft for difficult
tasks.

Reinforcement learning is based on the idea of an agent trying to
choose actions to maximize the rewards it receives over a period of
time. The agent uses a policy that, when given an input, returns a

Presented as Paper 2020-1600 at the AIAA Scitech 2020 Forum, Orlando,
FL, January 6-10, 2020; received 21 April 2020; accepted for publication 22
October 2020; published online 14 January 2021. Copyright © 2020 by The
Authors. Published by the American Institute of Aeronautics and Astronautics,
Inc., with permission. All requests for copying and permission to reprint
should be submitted to CCC at www.copyright.com; employ the eISSN
1533-6794 to initiate your request. See also AIAA Rights and Permissions
www.aiaa.org/randp.

*Ph.D. Candidate, Department of Mechanical and Aerospace Engineering,
1125 Colonel By Drive. Student Member AIAA.

fAssociate Professor, Department of Mechanical and Aerospace Engineer-
ing, 1125 Colonel By Drive. Senior Member AIAA.

254

suggested action to take. At each time step, a scalar reward, which
may be positive or negative, is given to the agent and corresponds to
task completion. Through trial and error, the agent attempts to learn a
policy that maps inputs to actions, such that the actions taken maxi-
mize the rewards received. By selecting an appropriate reward
scheme, complex behaviors can be learned by the agent without
being explicitly programmed. For a tethered space debris detumbling
task, for example, rewards could be given for reducing the angular
velocity of the debris, and penalties could be given for fuel usage,
forcing the agent to learn a fuel-efficient detumbling policy. The
engineering effort is reduced to specifying the reward system rather
than the complete logic required to complete the task. This is the main
appeal of reinforcement learning. Neural networks have become a
popular choice for representing the policy in reinforcement learning,
as they are universal function approximators [11]. When neural net-
works are used within reinforcement learning, the technique is called
deep reinforcement learning. The core concepts in reinforcement
learning have been around for decades, but have only become useful
in recent years due to the rapid rise in computing power. Many
notable papers have been published recently that use deep reinforce-
ment learning to solve previously unsolvable tasks. In 2015, Mnih
et al. [12] applied deep reinforcement learning to play many Atari
2600 [13] games at a superhuman level by training a policy to select
button presses (the action) as a function of the screen pixels (the
input). Silver et al. [14,15] used deep reinforcement learning to
master the game of Go in 2016, a decade earlier than expected.
Training deep reinforcement learning policies on physical robots is
time consuming and expensive, and leads to significant wear and tear
on the robot because, even with state-of-the-art learning algorithms,
the task may have to be repeated hundreds or thousands of times
before learning succeeds. Training a policy onboard a spacecraft is
not viable due to fuel, time, and computer limitations. An alternative
is to train the policy in a simulated environment and transfer the
trained policy to a physical robot. If the simulated model is suffi-
ciently accurate and the task is not highly dynamic, policies trained in
simulation may be directly transferrable to a real robot [16]. For
example, Tai et al. [17] trained a room-navigating robot in simulation
and deployed it to reality with success. Although good results were
obtained, this technique is unlikely to generalize well to more diffi-
cult or dynamic tasks due to the effect known as the simulation-to-
reality gap [16,18,19]. This effect states that, because the simulator
within which the policy is trained cannot perfectly model the dynam-
ics of the real world, such a policy will fail to perform well in a real-
world environment due to overfitting of the simulated dynamics.
Efforts to get around this problem often take advantage of domain
randomization [20] (i.e., randomizing the environmental parameters
for each simulation to force the policy to become robust to environ-
mental changes). Domain randomization has been used successfully
in a drone racing task [21] and in the manipulation of objects with a
robotic hand [20]. However, domain randomization significantly
increases the training time because the policy must learn to become

Check for
updates

https://doi.org/10.2514/1.A34838
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.A34838&domain=pdf&date_stamp=2021-01-20

Downloaded by CARLETON UNIVERSITY on March 18, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.A34838

HOVELL AND ULRICH 255

adept at all dynamic variations of the task. Other efforts to solve the
simulation-to-reality problem involve continuing to train the policy
once deployed to experiment. A drifting car [22] policy was partially
trained in simulation, and then fine-tuning training was performed
once experimental data were collected. A quadrotor stabilization task
[23] summed the policy output with a conventional proportional
derivative controller to guide the learning process and help with the
simulation-to-reality transfer.

Deep reinforcement learning has also been applied to aerospace
applications, although mostly in simulation. A simulated fleet of
wildfire surveillance aircraft used deep reinforcement learning to
command the flight path of the aircraft [24]. Deep reinforcement
learning has also been applied to spacecraft map generation while
orbiting small bodies [25], spacecraft orbit control in unknown
gravitational fields [26], and spacecraft orbital transfers [27]. Others
have used reinforcement learning to train a policy that performs
guidance and control for pinpoint planetary landing [28,29]. Neural
networks have been trained to approximate off-line-generated opti-
mal guidance paths for pinpoint planetary landing, such that the
neural network approximates an optimal guidance algorithm that
can be executed in real time [30,31].

Inspired by the ability of deep reinforcement learning to have
behavior be learned rather than handcrafted, and motivated by the
need for new simulation-to-reality transfer techniques, this paper
introduces a novel technique that allows for the use of reinforcement
learning on a real spacecraft platform. The proposed technique builds
off of the planetary landing work [28,29], where the neural networks
were trained to approximate handcrafted optimal guidance trajecto-
ries and a conventional controller was used to track the approximated
trajectory. Here, deep reinforcement learning is used to train a
guidance policy whose trajectories are fed to a conventional con-
troller to track. Using reinforcement learning allows an unbiased
guidance policy to be discovered by the agent instead of being shown
many handcrafted guidance trajectories to mimic. The proposed
technique is in contrast to typical reinforcement learning research,
where the policy is responsible for learning both the guidance and
control logic. By restricting the policy to learn only the guidance
portion, we harness the high-level, unbiased, task-solving abilities of
reinforcement learning while deferring the control aspect to the well-
established control theory community. Control theories have been
developed that are able to perform trajectory tracking well under
dynamic uncertainty [32—34], and can therefore handle model dis-
crepancies between simulation and reality. Harris et al. [35] recently
presented a strategy that uses reinforcement learning to switch
between a set of available controllers depending on the system state.
The authors [35] suggest that reinforcement learning should not be
tasked with learning guidance and control because control theory
already has great success. By combining deep reinforcement learning
for guidance with conventional control theory, the policy is prevented
from learning a controller that overfits the error-prone simulated
dynamics. We call our deep reinforcement learning guidance strategy
deep guidance. The novel contributions of this work are 1) the deep
guidance technique, which combines deep reinforcement learning as
guidance with a conventional controller; 2) experimental demonstra-
tions showing that this deep guidance strategy can be trained in
simulation and deployed to reality without any fine-tuning; and
3) the first, to the best of the authors’ knowledge, experimental

z2 o (x)

3

- /

a) Policy neural network

demonstration of artificial intelligence commanding the motion of
a spacecraft platform.

It should be noted that, although the authors were motivated
by difficult guidance tasks, such as detumbling tethered space debris,
in this paper, a proof-of-concept task—a simple spacecraft pose
tracking and docking scenario—is considered. Demonstrating the
deep guidance technique on a simple task will highlight its potential
for use on more difficult tasks.

This paper is organized as follows: Sec. II presents background on
deep reinforcement learning and the specific learning algorithm used
in this paper, Sec. III presents the novel guidance concept developed
by the authors, Sec. IV describes the pose tracking scenario consid-
ered, Sec. V presents numerical simulations demonstrating the effec-
tiveness of the technique, Sec. VI presents the experimental results,
and Sec. VII concludes this paper.

II. Deep Reinforcement Learning

The goal of deep reinforcement learning is to discover a policy, 7y,
represented by a feedforward neural network and whose subscript
denotes it has trainable weights @ that maps states, x € X, to actions,
a € Athat, when executed, maximize the expected rewards received
over one episode. (In reinforcement learning, one simulation is called
one episode.) The action is obtained by feeding the state to the policy,
as follows:

a = my(x) (D

Although many deep reinforcement learning algorithms are cur-
rently available, this work uses the distributed distributional deep
deterministic policy gradient (D4PG) algorithm [36]. The D4PG
algorithm, released in early 2018, was selected because it operates
in continuous state and action spaces, it has a deterministic output, it
can be trained in a distributed manner to take advantage of multi-CPU
machines, and it achieves state-of-the-art performance.

The D4PG [36] algorithm is an actor—critic algorithm, implying
there is a policy neural network, 7, (x), that maps states to actions and
avalue neural network, Z, (x, a), with trainable weights ¢ that maps a
state—action pair to a probability distribution of the predicted dis-
counted rewards for the remainder of the episode. The total dis-
counted rewards expected to be received from a given state, x, and
taking action a from the policy, 7y, is given by

J(0) = E{Z;(x, my(x)} 2

where J () is the expected reward from the given state as a function of
the policy weights 6, and [E denotes the expectation. The objective of
reinforcement learning is then to find a policy 7y that maximizes J(6)
through systematically adjusting 6.

To maximize Eq. (2), we must first establish the policy and value
neural networks, shown in Fig. 1. The policy network, shown in
Fig. la, accepts the system state x as the input, shown with three
elements x;, x,, and x3 in the figure, and outputs a commanded
action, @ = my(x), which may be multidimensional. Each arrow in
the network corresponds to a trainable weight that is parameterized
by 6. The value network, shown in Fig. 1b, accepts the state and

Z¢(w7 a)

—/

b) Value neural network

Fig. 1 Policy and value neural networks used in the D4PG algorithm.

Downloaded by CARLETON UNIVERSITY on March 18, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.A34838

256 HOVELL AND ULRICH

action vectors as inputs, and outputs a value distribution, Z(x, a). In
other words, it returns a probability distribution of how many dis-
counted rewards are predicted to be received from taking action a
in state x and continuing to follow the policy until the end of the
episode.

Simulated state, action, next state, and reward data are obtained
from running episodes and placing the data in a large replay buffer
that stores the most recent R data. Batches of size M of simulated data
are randomly sampled from the replay buffer and used to train the
policy and value neural networks. From a given batch of state, action,
next state, and reward data, the value network can be trained using
supervised learning. Gradient descent is used to minimize the cross-
entropy loss function given by

L(¢) = E[-Y log(Zy(x, a))] 3)

where Y is the target value distribution (i.e., the new best prediction of
the true value distribution based on the sampled data), as first intro-
duced by Bellmare et al. [37]. It is calculated using

N-1

Y=y 4 vV Zy (xy, mo (X)))
n=0

where r, is the reward received at time step n, y is the discount
factor (to weigh current rewards higher than future rewards), and
Zy (xy, g (xy)) is the value distribution evaluated N time steps into
the future. The N-step return [38] is used, where N data points into the
future are included for a more accurate prediction of Y. It should also
be noted that the symbols 8" and ¢’ indicate that these are not the true
weights of the policy and value networks, but rather an exponential
moving average of them, calculated by

0 =(1-¢)0 + €0 5)

¢'=0-e)¢"+ed (©6)

with € < 1. Having a copy of the policy and value networks with
smoothed weights has been empirically shown to have a stabilizing
effect on the learning process [12].

Equation (4) recursively calculates an updated prediction for
the value distribution for a given state—action pair according to the
reward data received. Then, by minimizing the loss functionin Eq. (3)
through adjusting ¢, using learning rate £, the value network slowly
approaches these updated predictions, which are then smoothed and
used in Eq. (4). This recursive process led Sutton and Barto [39] to
write, “we learn a guess from a guess.”

With the training procedure for the value network outlined, the
policy network must now be trained. The goal is to adjust the policy
parameters 0 in the direction of increasing the expected discounted
rewards for a given state, J(#). Because neural networks are differ-
entiable, the chain rule can be used to compute:

0J(0) _ 0J(0) da
00 ~ oa 00

N

where 0J(0)/da is computed from the value network, and
da /a0 is computed from the policy network. In a sense, we differ-
entiate through the value network into the policy network. More
formally

VJ(0) = E[Vyrmg(x)E[V . Zy(x, @)]la=r,x)] (8)
describes how the policy parameters 0 should be updated to increase
the expected rewards when the policy zy is used. Finally, the
parameters 6 are updated via

0=0+VyJ(O)a ©)

for a learning rate a.

To implement the algorithm, K agents run independent episodes
using the most up-to-date version of the policy. Gaussian explora-
tion noise is applied to the chosen action to force exploration and is
the basis for discovering new strategies. The action is obtained
through

a, = my(x,) + N0, 0'2) (10

where A (0, 6%) is the normal distribution with a mean of 0 and an
exploration noise standard deviation of o. The collected data are the
state x,, action a,, reward r,, and next state x,, y, and are placed into
areplay buffer that stores the most recent R data points. Asynchro-
nously, a learner randomly samples batches of data from the replay
buffer and uses them to train the value network one step using
Eq. (3), and then trains the policy network one step using Eq. (9).
Over time, the accuracy of the value network and the average
performance of each agent are expected to increase.

III. Deep Guidance

Using deep reinforcement learning for spacecraft guidance may
allow for difficult tasks to be accomplished through learning an
appropriate behavior rather than handcrafting such a behavior. In
order for the reinforcement learning algorithm presented in Sec. II to
be trained in simulation and deployed to reality without any fine-
tuning on the spacecraft, it is proposed that the learning algorithm
cannot be responsible for the entire guidance, navigation, and control
(GNC) stack. This is to prevent the policy from overfitting the
simulated dynamics and being unable to handle the transition to a
dynamically uncertain real world (i.e., the simulation-to-reality prob-
lem) [16]. For this reason, the authors present a system, called deep
guidance, which uses deep reinforcement learning as a guidance
system along with a conventional controller. Conventional control-
lers are able to handle dynamic uncertainties and modeling errors that
typically plague reinforcement learning policies that attempt to learn
the entire GNC routine. It is assumed that perfect navigation is
available. A block-scheme diagram of the proposed system is shown
in Fig. 2. The learned deep guidance block has the current state x; as
its input and the desired velocity v, as its output. The desired velocity
is fed to a conventional controller, which also receives the current
state x, and calculates a control effort u,. The control effort is
executed on the dynamics that generate a scalar reward r, and the
next state x, .

During training of the deep guidance model, an ideal controller is
assumed, as shown in Fig. 3. This ensures that the guidance model
does not overfit to any specific controller, thereby making this
approach controller-independent. Because the ideal controller per-
fectly commands the dynamics to move at the desired velocity v,, the
ideal controller and the dynamics model may be combined into a
single kinematics model.

Once trained, any controller may be used alongside the deep
guidance system for use on a real robot. Because the deep guidance
system only experiences an ideal controller during training, it is
possible that the guidance model will not experience any nonideal
states that may be encountered when using a real controller, which
may harm performance. For this reason, Gaussian noise may be
applied to the output of the kinematics to force the system into
undesirable states during training that may be encountered by a
nonideal controller.

The proposed system is trained and tested on a spacecraft pose
tracking and docking task detailed in the following section.

Ty Deep Ut Ut .| Tt
. Controller Dynamics
guidance

Tt

Delay

Fig.2 Proposed deep guidance strategy.

Downloaded by CARLETON UNIVERSITY on March 18, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.A34838

HOVELL AND ULRICH 257

Ty Deep vy Ideal Uy .| T4 Ty Deep Uy X X Ti+1
: Dynamics . Kinematics
guidance controller guidance
Tt
Delay Delay

Fig.3 Proposed deep guidance with an ideal controller for training purposes in simulation.

IV. Problem Statement

This section presents the simulated spacecraft pose tracking and
docking environment the deep guidance system will be trained within.
Although the deep guidance technique may allow for more complex
behaviors to be learned, a simple task is considered here as a proof of
concept. Similarly to other spacecraft researchers with experimental
validation [3,40-42], a double-integrator planar dynamics model is
used such that the available experimental facility can validate the
simulated results. Including a full orbital model was deemed to be
outside the scope of this paper, because the goal of this work was to
demonstrate the simulation-to-reality ability of the proposed deep
guidance approach. Furthermore, a double-integrator model is repre-
sentative of proximity operations in orbit over small distances and
timescales [43].

A chaser spacecraft exists in a planar laboratory environment, and
it is tasked with approaching and docking with a target spacecraft, as
shown in Fig. 4. The chaser and target spacecraft start at rest. The
chaser spacecraft is given some time to maneuver to the hold point in
front of the target. Then, the chaser spacecraft is tasked with
approaching the target such that the two may dock.

A. Kinematics and Dynamics Models

During training, a kinematics model is used, which approximates a
dynamics model and an ideal controller, as shown in Fig. 3. The deep
guidance policy accepts the chaser state error e, and outputs the
commanded action, which in this case is the velocity v,:

x,=[x y y]" (a1
€ =Xg—X; (12)
v, = mp(e;) (13)

where x, is the desired state, and x, is the state of the system, where x
and y represent the X and Y locations of the chaser, respectively, and
y represents the orientation of the chaser. The velocity v, is numeri-
cally integrated using the SciPy [44] Adams/backward differentia-
tion formula methods in Python to obtain x, ;.

To evaluate the learning performance, the trained policy is peri-
odically evaluated on an environment with full dynamics and a
controller, as shown in Fig. 2. In other words, it is “deployed” to
another simulation for evaluation in much the same way that it will be
deployed to an experiment in Sec. VI. The deep guidance policy

Hold point
Y
Docking point -
Chaser
Target AU
initial
position
X

Fig. 4 Spacecraft pose tracking and docking task.

outputs the desired velocity as in Eq. (13) that is fed to a simple
proportional velocity controller of the form:

u, = Kp(vt_'x.:t) (14)

where K, = diag{2,2,0.1}, and u, is the control effort. The K,
values were chosen by trial and error until satisfactory performance
was achieved.

A double-integrator dynamics model is used to simulate the
motion of the chaser:

s=tx (15)
m

. FV

y=— (16)
m

.. T

=y an

where F, and F are the forces applied in the X and Y directions,
respectively; 7 is the torque applied about the Z axis; m is the chaser
spacecraft mass; [is its moment of inertia; X is the acceleration in X
is its acceleration in Y; and y is the angular acceleration about Z. The
accelerations are integrated twice to obtain the position and orienta-
tion at the following time step.

The following subsection discusses the reward function used to
incentivize the desired behavior.

B. Reward Function

To calculate the reward given to the agent at each time step, a
reward field f is generated according to

fx) = —le] (18)

The reward field is zero at the desired state and becomes negative
linearly as the chaser moves away from the desired state.

The reward given to the agent, r,(x,, a,), depends on the action
taken in a given state. Therefore, the difference in the reward field
between the current and previous time steps is used to calculate the
reward given to the agent:

re = K(f(x) = f(x-))l (19)

The states are weighted with K = diag{0.5,0.5,0.1} to ensure the
rotational component does not dominate the reward field. By reward-
ing the change in reward field, a positive reward will be given to the
agent if it chooses an action that moves the chaser closer to the desired
state and a negative reward otherwise. Two additional penalties are
included to encourage the desired behavior: a velocity-error penalty
and a collision penalty. To avoid chaser oscillations, velocity errors
are penalized near the desired state. To avoid collisions, the reward is
reduced by 7 qige = 15 when the chaser collides with the target:

“ Vs — Upef “

IK(fCe) = f el —517“8 T+7 —Teotiice for [|d,]] £0.3
" 19, vl
Uy — Ve .
IKCf(x) = fxi)ll—c ”:3”7_’_:7 otherwise
t
(20)

Downloaded by CARLETON UNIVERSITY on March 18, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.A34838

258 HOVELL AND ULRICH

4 - —
0 -
3 —
—100 H
g —200 S 2t il
~
—300
1 - —
—400) M
| | | 0 | | | |
0 0.5 1 1.5 0 2 4 6 8
Episode 104 Training iteration 108
a) Learning curve b) Loss

Fig. 5 Training performance for chaser pose tracking and docking for a stationary target with constant initial conditions.

Here, v, is the chaser velocity, v, is the velocity of the hold/docking
point, 7 = 0.01 is a small constant, c; = 0.5 is used to weigh the
velocity penalty such that it does not dominate the reward function,
and d, is the distance between the chaser and the target.

The learning algorithm details are presented in the following
subsection.

C. Learning Algorithm Details

The policy and the value neural networks have 400 neurons in their
firsthidden layer and 300 neurons in their second layer; Fig. 1 is not to
scale. In the value network, the action is fed directly into the second
layer of the network, as this was empirically shown to be beneficial
[36,45]. The value network therefore has 138,951 trainable parame-
ters ¢ and the policy network has 123,603 trainable parameters 6.
Each neuron in both hidden layers uses a rectified linear unit as its
nonlinear activation function, shown as follows:

0 fory<O

y fory>0 @b

g(y) = {

In the output layer of the policy network, a g(y) = tanh(y) non-
linear activation function is used to force the commanded velocity to
be bounded. The output layer of the value neural network uses the
softmax function, shown as follows, to force the output value dis-
tribution to indeed be a valid probability distribution:

for each element y; and for B bins in the value distribution. Drawing
from the original value distribution paper [37], B = 51 bins are used
in this work. The value distribution bins are evenly spaced on the
empirically determined interval [—1000, 100], as this is the range of
accumulated rewards encountered during this pose tracking and
docking task.

The policy and value networks are trained using the Adam stochastic
optimization routine [46] with a learning rate of « = # = 0.0001. The
replay buffer R can contain 10° transition data points, and a mini batch
size M = 256 is used. The smoothed network parameters are updated
on each training iteration with e = 0.001. The noise standard deviation
applied to the action to force exploration during training is ¢ =
(1/3)[max(a) — min(a)](0.9999)%, where E is the episode number;
having a standard deviation of one-third the action range empirically
leads to good exploration of the action space. The noise standard
deviation is decayed exponentially as more episodes are performed
to narrow the action search area, at arate that halves roughly every 7000
episodes. Ten actors are used, K = 10, such that simulated data using
the most up-to-date version of the policy are being collected by 10
actors simultaneously. A discount factor of y = 0.99 was used along

with an N-step return length of N = 1. The TensorFlow# machine
learning framework was used to generate and train the neural networks.

Every five training episodes, the current policy is deployed and run
in a full dynamics environment with the proportional velocity con-
troller in Eq. (14) to evaluate its performance, as shown in Fig. 2.
During deployment, 6 = 0 in Eq. (10) such that no exploration noise
is applied to the deep guidance velocity commands.

V. Simulation Results

To test the deep guidance approach, three variations of the space-
craft pose tracking and docking task are studied. The first uses a
stationary target, the second uses a rotating target, and the third uses a
rotating target with a stationary obstacle that must be avoided. The
first scenario is run both with constant initial conditions and with
randomized initial conditions, whereas the second and third scenarios
use randomized initial conditions. The 30 cm cube spacecraft plat-
form has a uniform simulated mass of 10 kg.

A. Docking with a Stationary Target

The chaser and target nominal initial conditions are[3 m, 1 m, O rad]
and [1.85 m, 0.6 m, (z/2) rad] for the chaser and target, respectively.
The hold point is 1.0 m offset from the front face of the target, and the
docking point is 0.5 m offset. Each episode is run for 90 s with a 0.2 s
time step. For the first 45 s, the desired state is the hold point, and
afterward, it is the docking point. The commanded velocity bounds are
+0.05 m/s and £(z/18) rad/s.

Results of the first spacecraft pose tracking and docking task are
shown in Fig. 5, and are the results of 47 h of training on an Intel® i7-
8700 K CPU. The learning curve, shown in Fig. 5a, plots the total
rewards received on each episode, which increase, as expected,
during training. The deep guidance strategy successfully learned
the desired behavior after roughly 11,000 episodes. The loss func-
tion, calculated using Eq. (3) and shown in Fig. 5b, decreases as
anticipated, indicating that the value-network output distribution is
approaching the target values calculated using Eq. (4), on average.
Sample trajectories during training are shown in Fig. 6. The gray
object represents the initial pose of the chaser, the dashed line
represents its trajectory, and the solid black object represents its final
pose. The pose tracking and docking task was successfully learned.

Next, the chaser and target initial conditions were randomized at
the beginning of each episode to force the deep guidance system to
generalize across a range of initial states and not simply master a
single trajectory. The initial states were randomized around the
nominal ones according to a normal distribution with a standard
deviation of 0.3 m for position and (z/2) rad for attitude. Figure 7
shows the learning curve and associated loss function during training.
The learning curve, shown in Fig. 7a, shows that the agent success-

Software available from https://www.tensorflow.org/.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/

Downloaded by CARLETON UNIVERSITY on March 18, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.A34838

HOVELL AND ULRICH 259

- - - Episode 1

1
- - - Episode 400

21 21
~ . L4 ‘ ‘ N ~
Eﬁ g I AN
> 1 %, 1 > 11]
(] T
'I
Target L2 ‘ Target
O Il Il Il Il Il Il Il O Il Il Il Il Il Il Il
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5
X, m X, m
1 1 1 1 1
- - - Episode 800 - - = Episode 15,000 |
2 . 2 .
A
.\:'.\\‘ ‘l--.~~ ~
.~ — .~
E ¢ ~‘v s = : s
N . . N
Target Target
0 Il Il Il Il Il Il Il 0 Il Il Il Il Il Il Il
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5
X, m X, m
Fig. 6 Visualization of chaser trajectories at various episodes during the training process.
4 |- -
0
3 -
ke
£ —200 S 2f .
s
=
1 |- -
—400 A sy
| | | | | | 0 | | |
0 0.5 1 1.5 2 2.5 3 0 2 4 6
Episode 104 Training iteration 10°
a) Learning curve b) Loss

Fig. 7 Training performance for chaser pose tracking and docking for a stationary target with randomized initial conditions.

fully learned a more general guidance strategy in the presence of
randomized initial conditions. The learning curve appears noisier
than the learning curve shown in Fig. 5a because each episode may
have slightly more or less rewards available depending on the initial
conditions. Sample trajectories once training was complete are
shown in Fig. 8.

B. Docking with a Spinning Target

This subsection presents the second scenario that the deep guid-
ance system was trained on, that is, a spacecraft pose tracking and
docking task in the presence of a spinning target. All learning
parameters are identical to those presented in Sec. IV.C, demonstrat-
ing the generality of the proposed deep guidance approach. The target
spacecraft is given a constant counterclockwise angular velocity of
@ = (n/45) rad/s. The velocity bounds on the chaser are increased
to £0.1 m/s. Each episode is run for 180 s with a 0.2 s time step. For
the first 90 s, the chaser is incentivized to track the moving hold
position, and afterward, it is rewarded for tracking the moving dock-
ing point. The initial conditions have a mean of [3 m, 1 m, O rad] and
[1.85 m, 1.2 m, O rad] for the chaser and target, respectively, and a
standard deviation of 0.3 m for position and (z/2) rad for attitude.
Because the target is rotating, the hold and docking points are

inertially moving with time. The learning curve in Fig. 9a shows that
adeep guidance policy was successfully learned. Sample trajectories,
shown in Fig. 10, show example motion of the chaser. The target
performs two complete rotations during the episode so that its initial
and final orientations are as shown.

C. Docking While Avoiding an Obstacle

This section presents a numerical simulation that is identical to
Sec. V.B except for the addition of a stationary obstacle that must be
avoided. The input to the policy is modified to include the distance
from the chaser to the obstacle, as follows:

o,=[el dll" (23)

where d, are the X and Y distances from the chaser to the obstacle,
respectively. For this scenario, the deep guidance velocity is calcu-
lated through

v, = mg(0,) 24

The r oniqe penalty is also applied when the chaser collides with the
target. Collision occurs when the center of mass of the chaser is
within 0.3 m of the target. The position of the target is [1.2, 1.2] m.

Downloaded by CARLETON UNIVERSITY on March 18, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.A34838

260 HOVELL AND ULRICH

- - = Episode 25,700

- - - Episode 28,200 ‘

2 =
|‘ '~~‘
A Y .
‘
1F a > |
Target
0 Il Il Il Il Il Il Il
0 0.5 1 1.5 2 2.5 3 3.5
X, m
1 L L L L
- - - Episode 28,900
2| |
!
1F N 1
Target
0 Il Il Il Il Il Il Il

0 0.5 1 1.5 2 2.5 3 3.5
X, m

Fig. 8 Examples of learned chaser trajectories with randomized initial conditions.

2 -
L
E ‘\‘
>" 1F AN 0 .
Target
O Il Il Il Il Il Il Il
0 0.5 1 1.5 2 2.5 3 3.5
X, m
1 L L L L
- - - Episode 28,700 |
2 - .
:

: ' O
> 1l |
Target
0 Il Il Il Il Il Il Il
0 0.5 1 1.5 2 2.5 3 3.5

X, m
0 T T T T T
—500
s
g
2
Q
o~
—1,000
—1,500 [
| | | | |
0 0.2 0.4 0.6 0.8 1

Episode 104
a) Learning curve

Loss
[\
T
Il

0 | | | | |
0 0.2 0.4 0.6 0.8 1

Training iteration 108
b) Loss

Fig. 9 Training performance for chaser pose tracking and docking with a rotating target.

The learning curve in Fig. 11a shows that a deep guidance policy
was successfully learned. Sample trajectories, shown in Fig. 12, show
the motion of the chaser. A policy that causes the chaser to track the
target while avoiding collision with the obstacle was successfully
learned.

The deep guidance system presented in this paper was successfully
trained on simulated spacecraft pose tracking and docking tasks. It
allows the designer to easily specify a reward function to convey the
desired behavior to the agent instead of handcrafting a guidance
trajectory. Although the guidance trajectories learned in this paper
by the deep guidance system would be trivial to handcraft, the
purpose of this paper is to introduce the deep guidance technique.
Itis expected that the deep guidance technique will unlock the ability
for more difficult learned guidance strategies in future work. All
codes used are open source and can be accessed at http://www.
github.com/Kirkados/JSR2020 D4PG.

The trained guidance policies are tested in experiment in the
following section.

VI. Experimental Validation

To validate the numerical simulations and to test if the proposed
deep guidance strategy can overcome the simulation-to-reality gap,

experiments are performed in a laboratory environment at Carleton
University. A planar gravity-offset testbed is used, where two space-
craft platforms are positioned on a flat granite surface. Air bearings
are used to provide a near-friction-free planar environment. The
experimental facility is discussed, followed by the experimental
setup and results.

A. Experiment Facility

Experiments were conducted at the Spacecraft Robotics and Con-
trol Laboratory of Carleton University, using the Spacecraft Proxim-
ity Operations Testbed (SPOT). Specifically, SPOT consists of two
air-bearing spacecraft platforms operating in close proximity on a
2.4 x 3.5 m granite surface. The use of air bearings on the platforms
reduces the friction to a negligible level. Because of surface slope
angles of 0.0026 and 0.0031 deg along both directions, residual
gravitational accelerations of 0.439 and 0.525 mm/s? perturb the
dynamics of the floating platforms along the X and Y directions,
respectively. Both platforms have dimensions of 0.3 X 0.3 X 0.3 m,
and are actuated by expelling compressed air at 550 kPa (80 psi)
through eight miniature air nozzles distributed around each platform,
thereby providing full planar control authority. Each thruster gener-
ates approximately 0.25 N of thrust and is controlled at a frequency of

http://www.github.com/Kirkados/JSR2020_D4PG
http://www.github.com/Kirkados/JSR2020_D4PG
http://www.github.com/Kirkados/JSR2020_D4PG
http://www.github.com/Kirkados/JSR2020_D4PG

Downloaded by CARLETON UNIVERSITY on March 18, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.A34838

HOVELL AND ULRICH 261

1 1
_+1- == Episode 8,000 .===="""{--- Episode 8,500
21 PR < : 2} e < :
¢ . e .
’ . ’ - Y
'l RN N N e T N, A
+ ST =TT S ! ‘ ~-‘~ *
= ! .’ ol , ‘ Y
- 1 ' *. IS ' »
A \\ l' ! ‘\ ‘o P d @
A} -~ . U S U
N Semm” ’ \\ l,
‘\\ ’l, ‘5~ d'
0 L L L .--\-——‘\ L L 0 L L L) L L L L
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5
X, m X, m
1 i | - L L L L
- - - Episode 9,900 R - - - Episode 10,000 ‘
21 Pl < . 2} g ™ 1
'f‘ I, O"'h\ kY
. ’ ¢ \~
J ':' I,’ ”~~~ “N
¢ foy Voo @
S ! o | 1} PN, . ' |
N ' \ Se-" ’
) AN ‘. S
N “~____-’_,”
0 L L ~7“ L 0 L L L L L L L
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5
X, m X, m
Fig. 10 Examples of learned chaser trajectories with a rotating target.
0 4 il
—500 | 3H -
5 7
g S 2F _
~ —1,000f
1 - |
—1,500 i
lua VR -
| | | 0 | | | | | |
0 0.5 1 1.5 0 1 2 3 4 5 6
Episode 104 Training iteration 108
a) Learning curve b) Loss

Fig. 11 Training performance for chaser pose tracking and docking while avoiding an obstacle.

500 Hz by a pulse-width-modulation scheme using solenoid valves.
Pressurized air for the thrusters and the air bearing flotation system is
stored onboard in a single air cylinder at 31 MPa (4500 psi). The
structure consists of an aluminum frame with four corner rods on
which three modular decks are stacked. To protect the internal com-
ponents, the structure is covered with semitransparent acrylic panels.
Figure 13a shows the SPOT laboratory facility, and Fig. 13b shows
two SPOT platforms in a proximity operations configuration.

The motion of both platforms is measured in real time through four
active light-emitting diodes (LEDs) on each platform, which are
tracked by an eight-camera PhaseSpace® motion capture system.
This provides highly accurate ground-truth position and attitude data.
All motion capture cameras are connected to a PhaseSpace server,
which is connected to a ground station computer. The ground station
computer wirelessly communicates ground truth information to the
onboard computers of the platforms, which consist of Raspberry Pi 3s
running the Raspbian Linux operating system. Based on the position
and attitude data the platforms wirelessly receive, they can perform
feedback control by calculating the required thrust to maneuver
autonomously and actuating the appropriate solenoid valves to real-
ize this motion. The ground station computer also receives real-time

telemetry data (i.e., any signals of interest, as specified by the
user) from all onboard computers, for post-experiment analysis
purposes.

A MATLAB/Simulink® numerical simulator that recreates the
dynamics and emulates the different onboard sensors and actuators
is first used to design and test the upcoming experiment. Once the
performance in simulations is satisfactory, the control software is
converted into C/C++ using Embedded Coder®, compiled, and then
executed on the Raspberry Pi-3 computers of the platforms.

An NVIDIA Jetson TX2 Module is used to run the trained deep
guidance policy neural network in real time. It accepts the current
system state and returns a guidance velocity signal to the Raspberry
Pi-3 that executes a control law to track the commanded velocity.

B. Setup

The simulations presented in Sec. V were chosen such that they are
replicable experimentally. In other words, all three pose tracking and
docking tasks with randomized initial conditions are attempted in
experiment. The final parameters @ of the trained deep guidance
policies are exported for use on the chaser SPOT platform. The value

Downloaded by CARLETON UNIVERSITY on March 18, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.A34838

262 HOVELL AND ULRICH

} - - - Episode 15,300

21]]
g
>“F 1V ‘@ |

1
0 |
0 0.5

2} i
g
=~ 1l i

0 | | | | | | |

L L L L
- - - Episode 15,400 ‘
2l T .
" ~~\
’ ~
" Ss
o S
. L ~.. S
- " Obstaclg) Seo RS
1F " fl ~“ E
S ‘ 1
\ .
\‘ AN . P ll
A ‘
S ’,
~ ’
~ ’
0 ! ! ~al ! Ld] ! !
0 0.5
21
1F
0 I
0 0.5

X, m

Fig. 12 Examples of learned chaser trajectories while avoiding an obstacle.

b) SPOT platforms
Fig. 13 Spacecraft Proximity Operations Testbed.

network is only used during training and is not exported along with
the policy network. Initial conditions are similar to those used
previously in simulation.

The platforms remain in contact with the table until a strong lock
has been acquired on the LEDs by the motion capture system.
Following this, the platforms begin to float and maneuver to the

desired initial conditions. Then, the target remains stationary or
begins rotating while the chaser platform uses the deep guidance
policy trained in simulation to guide itself toward the hold point and
finally the docking point on the target.

It should be noted that a significant number of discrepancies exist
between the simulated environment the policy was trained within and
the experimental facility. The simulated environment did not account
for the discrete thrusters and their limitations, the control thrust
allocation strategy, signal noise, system delays, friction, air resis-
tance, center of mass offsets, thruster plume interaction, and table
slope. In addition, the spacecraft mass used to evaluate the training
was 10 kg, whereas the experimental spacecraft platforms have a
mass of 16.9 kg. Significant discrepancies exist between the simu-
lated training environment and the experimental environment, which
is an excellent test for the simulation-to-reality capabilities of the
proposed deep guidance technique. Because of facility size limita-
tions, the hold point was reduced from 1.0 to 0.9 m offset from the
front face of the target.

C. Results

A trajectory of the experiment with a stationary target is shown in
Fig. 14a. It shows the the deep guidance successfully outputs velocity
commands that bring the chaser to the hold point, and then additional
velocity commands to move toward the target docking port. A
trajectory of the experiment with arotating target is shown in Fig. 14b,
and a trajectory of the experiment with an obstacle and a rotating
target is shown in Fig. 14c. The learned deep guidance technique
successfully commands an appropriate velocity signal for the chaser
to complete the tasks.

The deep guidance technique was successfully trained exclusively
in simulation and deployed to an experimental facility, and achieved
similar performance to that during training. Combining the neural-
network guidance with conventional control allowed the trained
system to handle unmodeled effects present in the experiment. The
proposed technique successfully demonstrates the deep guidance
technique as a viable solution to the simulation-to-reality problem
present in deep reinforcement learning. A video of the simulated and
experimental results can be found in supplemental video S1 or online
at https://youtu.be/n7 K6aC5v0ay.

https://youtu.be/n7K6aC5v0aY
https://youtu.be/n7K6aC5v0aY

Downloaded by CARLETON UNIVERSITY on March 18, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.A34838

HOVELL AND ULRICH

21 |
1 ~~~\
a . Q“
| F |
Target
O L L L L L L L
0 0.5 1 1.5 2 2.5 3 3.5
X, m

a) Stationary target

263

TN
2 | '0" N ~ N |
P o "' o :“\c
R Rotte)
N g K .
= ' N
5T PR M \
1 1 \ g D N
‘\ AN - o" 'l
. ~ae v
0~ 'l
0 L L L L L L L
0 0.5 1 1.5 2 2.5 3 3.5
X, m
b) Rotating target

X, m

¢) Rotating target with obstacle avoidance

Fig. 14 Experimental trajectories of deep guidance in SPOT of Carleton University.

VII. Conclusions

This paper introduced deep reinforcement learning to the guidance
problem for spacecraft robotics. Through training a guidance policy to
accomplish a goal, complex behaviors can be learned rather than
handcrafted. The simulation-to-reality gap dictates that policies trained
in simulation often do not transfer well to reality. To avoid this, and to
avoid additional training once deployed to a physical robot, the authors
restrict the policy to output a guidance signal, which a conventional
controller is tasked with tracking. Conventional control can handle
the modeling errors that typically plague reinforcement learning. This
paper tests this learned guidance technique, which the authors call
deep guidance, on a simple problem, that is, spacecraft pose tracking
and docking. Numerical simulations show that proximity operation
tasks can be successfully learned using the deep guidance technique.
The trained policies are then deployed to three experiments, with
comparable results to those in simulation, even though the simulated
environment did not model all effects present in the experimental
facility. Future work will further explore the generality of the technique
and its use on more-difficult problems.

Acknowledgment

This research was financially supported in part by the Natural
Sciences and Engineering Research Council of Canada under the
Postgraduate Scholarship—Doctoral PGSD3-503919-2017 award.

References

[1] Flores-Abad, A., Ma, O., Pham, K., and Ulrich, S., “A Review of Space

[2

3

—

=

Robotics Technologies for On-Orbit Servicing,” Progress in Aerospace
Sciences, Vol. 68, July 2014, pp. 1-26.
https://doi.org/10.1016/j.paerosci.2014.03.002

Aghili, F., “A Prediction and Motion-Planning Scheme for Visually
Guided Robotic Capturing of Free-Floating Tumbling Objects with
Uncertain Dynamics,” IEEE Transactions on Robotics, Vol. 28, No. 3,
2012, pp. 634-649.

https://doi.org/10.1109/TRO.2011.2179581

Wilde, M., Ciarcia, M., Grompone, A., and Romano, M., “Experimental
Characterization of Inverse Dynamics Guidance in Docking with a
Rotating Target,” Journal of Guidance, Control, and Dynamics, Vol. 39,
No. 6, 2016, pp. 1173-1187.

https://doi.org/10.2514/1.G001631

(4]

[5

=

[6

=

[7

—

[8

[t

[9

—

[10]

[11]

[12]

[13]

Ma, Z., Ma, O., and Shashikanth, B. N., “Optimal Approach to and
Alignment with a Rotating Rigid Body for Capture,” Journal of the
Astronautical Sciences, Vol. 55, No. 4, 2007, pp. 407—419.
https://doi.org/10.1007/BF03256532

Dong, H., Hu, Q., and Akella, M. R., “Dual-Quaternion-Based Space-
craft Autonomous Rendezvous and Docking Under Six-Degree-of-
Freedom Motion Constraints,” Journal of Guidance, Control, and
Dynamics, Vol. 41, No. 5, 2018, pp. 1150-1162.
https://doi.org/10.2514/1.G003094

Filipe, N., and Tsiotras, P., “Adaptive Position and Attitude Tracking
Controller for Satellite Proximity Operations Using Dual Quaternions,”
Journal of Guidance, Control, and Dynamics, Vol. 38, No. 4, 2015,
pp. 566-577.

https://doi.org/10.2514/1.G000054

Gui, H., and Vukovich, G., “Finite-Time Output-Feedback Position and
Attitude Tracking of a Rigid Body,” Automatica, Vol. 74, Dec. 2016,
pp. 270-278.

https://doi.org/10.1016/j.automatica.2016.08.003

Pothen, A. A., and Ulrich, S., “Close-Range Rendezvous with a Moving
Target Spacecraft Using Udwadia-Kalaba Equation,” American Control
Conference, IEEE Publ., Piscataway, NJ, 2019, pp. 3267-3272.
https://doi.org/10.23919/ACC.2019.8815115

Pothen, A. A., and Ulrich, S., “Pose Tracking Control for Spacecraft
Proximity Operations Using the Udwadia-Kalaba Framework,” AIAA
Guidance, Navigation, and Control Conference, AIAA Paper 2020-
1598, Jan. 2020.

https://doi.org/10.2514/6.2020-1598

Hough, J., and Ulrich, S., “Lyapunov Vector Fields for Thrust-Limited
Spacecraft Docking with an Elliptically-Orbiting Uncooperative Tum-
bling Target,” AIAA Guidance, Navigation, and Control Conference,
ATAA Paper 2020-2078, Jan. 2020.
https://doi.org/10.2514/6.2020-2078

Hornik, K., Stinchcombe, M., and White, H., “Multilayer Feedforward
Networks Are Universal Approximator,” Neural Networks, Vol. 2,
No. 5, 1989, pp. 359-366.
https://doi.org/10.1016/0893-6080(89)90020-8

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Bellemare,
M., Graves, A., Riedmiller, M., Fidjeland, A., Ostrovski, G., Petersen,
S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S., and Hassabis, D., “Human-Level Control
Through Deep Reinforcement Learning,” Nature, Vol. 518, No. 7540,
2015, pp. 529-533.

https://doi.org/10.1038/nature 14236

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M., “The Arcade
Learning Environment: An Evaluation Platform for General Agents,”

https://doi.org/10.1016/j.paerosci.2014.03.002
https://doi.org/10.1016/j.paerosci.2014.03.002
https://doi.org/10.1016/j.paerosci.2014.03.002
https://doi.org/10.1016/j.paerosci.2014.03.002
https://doi.org/10.1016/j.paerosci.2014.03.002
https://doi.org/10.1016/j.paerosci.2014.03.002
https://doi.org/10.1016/j.paerosci.2014.03.002
https://doi.org/10.1109/TRO.2011.2179581
https://doi.org/10.1109/TRO.2011.2179581
https://doi.org/10.1109/TRO.2011.2179581
https://doi.org/10.1109/TRO.2011.2179581
https://doi.org/10.1109/TRO.2011.2179581
https://doi.org/10.2514/1.G001631
https://doi.org/10.2514/1.G001631
https://doi.org/10.2514/1.G001631
https://doi.org/10.2514/1.G001631
https://doi.org/10.1007/BF03256532
https://doi.org/10.1007/BF03256532
https://doi.org/10.1007/BF03256532
https://doi.org/10.2514/1.G003094
https://doi.org/10.2514/1.G003094
https://doi.org/10.2514/1.G003094
https://doi.org/10.2514/1.G003094
https://doi.org/10.2514/1.G000054
https://doi.org/10.2514/1.G000054
https://doi.org/10.2514/1.G000054
https://doi.org/10.2514/1.G000054
https://doi.org/10.1016/j.automatica.2016.08.003
https://doi.org/10.1016/j.automatica.2016.08.003
https://doi.org/10.1016/j.automatica.2016.08.003
https://doi.org/10.1016/j.automatica.2016.08.003
https://doi.org/10.1016/j.automatica.2016.08.003
https://doi.org/10.1016/j.automatica.2016.08.003
https://doi.org/10.1016/j.automatica.2016.08.003
https://doi.org/10.23919/ACC.2019.8815115
https://doi.org/10.23919/ACC.2019.8815115
https://doi.org/10.23919/ACC.2019.8815115
https://doi.org/10.23919/ACC.2019.8815115
https://doi.org/10.23919/ACC.2019.8815115
https://doi.org/10.2514/6.2020-1598
https://doi.org/10.2514/6.2020-1598
https://doi.org/10.2514/6.2020-1598
https://doi.org/10.2514/6.2020-1598
https://doi.org/10.2514/6.2020-2078
https://doi.org/10.2514/6.2020-2078
https://doi.org/10.2514/6.2020-2078
https://doi.org/10.2514/6.2020-2078
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236

Downloaded by CARLETON UNIVERSITY on March 18, 2021 | http://arc.aiaa.org | DOI: 10.2514/1.A34838

264

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

HOVELL AND ULRICH

Journal of Artificial Intelligence Research, Vol. 47, June 2013, pp. 253—
279.

https://doi.org/10.1613/jair.3912

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N.,
Sutskever, 1., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
and Hassabis, D., “Mastering the Game of Go with Deep Neural Net-
works and Tree Search,” Nature, Vol. 529, No. 7587,2016, pp. 484—489.
https://doi.org/10.1038/nature 16961

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, 1., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap,
T., Hui, F,, Sifre, L., van den Driessche, G., Graepel, T., and Hassabis,
D., “Mastering the Game of Go Without Human Knowledge,” Nature,
Vol. 550, No. 7676, 2017, pp. 354-359.
https://doi.org/10.1038/nature24270

Kober, J., Bagnell, J. A., and Peters, J., “Reinforcement Learning in
Robotics: A Survey,” International Journal of Robotics Research,
Vol. 32, No. 11, 2013, pp. 1238-1274.
https://doi.org/10.1177/0278364913495721

Tai, L., Paolo, G., and Liu, M., “Virtual-to-Real Deep Reinforcement
Learning: Continuous Control of Mobile Robots for Mapless Naviga-
tion,” IEEE International Conference on Intelligent Robots and Systems,
IEEE Publ., Piscataway, NJ, 2017, pp. 31-36.
https://doi.org/10.1109/IROS.2017.8202134

Siinderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J.,
Upcroft, B., Abbeel, P., Burgard, W., Milford, M., and Corke, P., “The
Limits and Potentials of Deep Learning for Robotics,” International
Journal of Robotics Research, Vol. 37, Nos. 4-5, 2018, pp. 405-420.
https://doi.org/10.1177/0278364918770733

Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalak-
rishnan, M., Downs, L., Ibarz, J., Pastor, P., Konolige, K., Levine, S.,
and Vanhoucke, V., “Using Simulation and Domain Adaptation to
Improve Efficiency of Deep Robotic Grasping,” IEEE International
Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ,
2018, pp. 4243-4250.

https://doi.org/10.1109/ICRA.2018.8460875

Andrychowicz, O. A. M., Baker, B., Chociej, M., Jozefowicz, R.,
McGrew, B., Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A.,
Schneider, J., Sidor, S., Tobin, J., Welinder, P., Weng, L., and Zaremba, W.,
“Learning Dexterous In-Hand Manipulation,” International Journal of
Robotics Research, Vol. 39, No. 1, 2020, pp. 3-20.
https://doi.org/10.1177/0278364919887447

Loquercio, A., Kaufmann, E., Ranftl, R., Dosovitskiy, A., Koltun, V.,
and Scaramuzza, D., “Deep Drone Racing: From Simulation to Reality
with Domain Randomization,” IEEE Transactions on Robotics, Vol. 36,
No. 1, 2020, pp. 1-14.

https://doi.org/10.1109/TR0O.2019.2942989

Cutler, M., and How, J. P., “Autonomous Drifting Using Simulation-Aided
Reinforcement Learning,” IEEE International Conference on Robotics
and Automation, IEEE Publ., Piscataway, NJ, 2016, pp. 5442-5448.
https://doi.org/10.1109/ICRA.2016.7487756

Hwangbo, J., Sa, L., Siegwart, R., and Hutter, M., “Control of a Quad-
rotor with Reinforcement Learning,” IEEE Robotics and Automation
Letters, Vol. 2, No. 4, 2017, pp. 2096-2103.
https://doi.org/10.1109/LRA.2017.2720851

Julian, K. D., and Kochenderfer, M. J., “Distributed Wildfire Surveil-
lance with Autonomous Aircraft Using Deep Reinforcement Learning,”
Journal of Guidance, Control, and Dynamics, Vol. 42, No. 8, 2019,
pp. 1768-1778.

https://doi.org/10.2514/1.G004106

Chan, D. M., and Agha-Mohammadi, A. A., “Autonomous Imaging and
Mapping of Small Bodies Using Deep Reinforcement Learning,” IEEE
Aerospace Conference, IEEE Publ., Piscataway, NJ, 2019.
https://doi.org/10.1109/AER0.2019.8742147

Willis, S., Izzo, D., and Hennes, D., “Reinforcement Learning for
Spacecraft Maneuvering Near Small Bodies,” AAS/AIAA Space Flight
Mechanics Meeting, AAS Paper 16-277, Feb. 2016, pp. 1351-1368.
Lafarge, N. B., Miller, D., Howell, K. C., and Linares, R., “Guidance for
Closed-Loop Transfers Using Reinforcement Learning with Applica-
tion to Libration Point Orbits,” AIAA Guidance, Navigation, and Con-
trol Conference, AIAA Paper 2020-0458, Jan. 2020.
https://doi.org/10.2514/6.2020-0458

Scorsoglio, A., Furfaro, R., Linares, R., and Gaudet, B., “Image-
Based Deep Reinforcement Learning for Autonomous Lunar Landing,”
AIAA Guidance, Navigation, and Control Conference, AIAA Paper
2020-1910, Jan. 2020.

https://doi.org/10.2514/6.2020-1910

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Gaudet, B., and Furfaro, R., “Adaptive Pinpoint and Fuel Efficient Mars
Landing Using Reinforcement Learning,” IEEE/CAA Journal of Auto-
matica Sinica, Vol. 1, No. 4, 2014, pp. 397-411.
https://doi.org/10.1109/JAS.2014.7004667

Furfaro, R., Simo, J., Gaudet, B., and Wibben, D. R., “Neural-Based
Trajectory Shaping Approach for Terminal Planetary Pinpoint Guid-
ance,” AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 13-
875, Aug. 2013.

Sanchez-Sanchez, C., and Izzo, D., “Real-Time Optimal Control via
Deep Neural Networks: Study on Landing Problems,” Journal of Guid-
ance, Control, and Dynamics, Vol. 41, No. 5, 2018, pp. 1122-1135.
https://doi.org/10.2514/1.G002357

Ulrich, S., Saenz-Otero, A., and Barkana, 1., “Passivity-Based Adaptive
Control of Robotic Spacecraft for Proximity Operations Under Uncer-
tainties,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 6,
2016, pp. 1444-1453.

https://doi.org/10.2514/1.G001491

Jafarnejadsani, H., Sun, D., Lee, H., and Hovakimyan, N., “Optimized
L1 Adaptive Controller for Trajectory Tracking of an Indoor Quadro-
tor,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 6,2017,
pp. 1415-1427.

https://doi.org/10.2514/1.G000566

Huang, P., Wang, D., Meng, Z., Zhang, F., and Guo, J., “Adaptive
Postcapture Backstepping Control for Tumbling Tethered Space Robot-
Target Combination,” Journal of Guidance, Control, and Dynamics,
Vol. 39, No. 1, 2016, pp. 150-156.

https://doi.org/10.2514/1.G001309

Harris, A., Teil, T., and Schaub, H., “Spacecraft Decision-Making
Autonomy Using Deep Reinforcement Learning,” AAS/AIAA Space
Flight Mechanics Meeting, AAS Paper 19-447, Jan. 2019.
Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D.,
Dhruva, T. B., Muldal, A., Heess, N., and Lillicrap, T., “Distributed
Distributional Deterministic Policy Gradients,” International Conference
on Learning Representations, Vancouver, Canada, 2018.

Bellemare, M. G., Dabney, W., and Munos, R., “A Distributional
Perspective on Reinforcement Learning,” International Conference on
Machine Learning, PMLR, Sydney, Australia, 2017, pp. 449-458.
Mnih, V., Badia, A., Mirza, M., Graves, A., and Lillicrap, T., “Asyn-
chronous Methods for Deep Reinforcement Learning,” International
Conference on Machine Learning, PMLR, New York, 2016, pp. 1928—
1937.

Sutton, R. S., and Barto, A. G., Reinforcement Learning: An Introduc-
tion, 2nd ed., MIT Press, Cambridge, MA, 1998, p. 148.

Zappulla, R., Park, H., Virgili-Llop, J., and Romano, M., “Real-Time
Autonomous Spacecraft Proximity Maneuvers and Docking Using an
Adaptive Artificial Potential Field Approach,” IEEE Transactions on
Control Systems Technology, Vol. 27, No. 6, 2019, pp. 2598-2605.
https://doi.org/10.1109/TCST.2018.2866963

Ciarcia, M., Grompone, A., and Romano, M., “A Near-Optimal Guid-
ance for Cooperative Docking Maneuvers,” Acta Astronautica, Vol. 102,
Sept. 2014, pp. 367-377.
https://doi.org/10.1016/j.actaastro.2014.01.002

Mammarella, M., Capello, E., Park, H., Guglieri, G., and Romano, M.,
“Tube-Based Robust Model Predictive Control for Spacecraft Proximity
Operations in the Presence of Persistent Disturbance,” Aerospace Sci-
ence and Technology, Vol. 77, June 2018, pp. 585-594.
https://doi.org/10.1016/j.ast.2018.04.009

Saulnier, K., Pérez, D., Huang, R. C., Gallardo, D., Tilton, G., and
Bevilacqua, R., “A Six-Degree-of-Freedom Hardware-in-the-Loop
Simulator for Small Spacecraft,” Acta Astronautica, Vol. 105, No. 2,
2014, pp. 444-462.

https://doi.org/10.1016/j.actaastro.2014.10.027

Oliphant, T. E., “Python for Scientific Computing,” Computing in
Science & Engineering, Vol. 9, No. 3, 2007, pp. 10-20.
https://doi.org/10.1109/MCSE.2007.58

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., and Wierstra, D., “Continuous Control with Deep Reinforcement
Learning,” International Conference on Learning Representations, San
Juan, Puerto Rico, 2016.

Kingma, D. P, and Ba, J., “Adam: A Method for Stochastic Optimiza-
tion,” International Conference on Learning Representations, San
Diego, CA, 2015.

I. I. Hussein
Associate Editor

https://doi.org/10.1613/jair.3912
https://doi.org/10.1613/jair.3912
https://doi.org/10.1613/jair.3912
https://doi.org/10.1613/jair.3912
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1109/ICRA.2018.8460875
https://doi.org/10.1109/ICRA.2018.8460875
https://doi.org/10.1109/ICRA.2018.8460875
https://doi.org/10.1109/ICRA.2018.8460875
https://doi.org/10.1109/ICRA.2018.8460875
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1109/TRO.2019.2942989
https://doi.org/10.1109/TRO.2019.2942989
https://doi.org/10.1109/TRO.2019.2942989
https://doi.org/10.1109/TRO.2019.2942989
https://doi.org/10.1109/TRO.2019.2942989
https://doi.org/10.1109/ICRA.2016.7487756
https://doi.org/10.1109/ICRA.2016.7487756
https://doi.org/10.1109/ICRA.2016.7487756
https://doi.org/10.1109/ICRA.2016.7487756
https://doi.org/10.1109/ICRA.2016.7487756
https://doi.org/10.1109/LRA.2017.2720851
https://doi.org/10.1109/LRA.2017.2720851
https://doi.org/10.1109/LRA.2017.2720851
https://doi.org/10.1109/LRA.2017.2720851
https://doi.org/10.1109/LRA.2017.2720851
https://doi.org/10.2514/1.G004106
https://doi.org/10.2514/1.G004106
https://doi.org/10.2514/1.G004106
https://doi.org/10.2514/1.G004106
https://doi.org/10.1109/AERO.2019.8742147
https://doi.org/10.1109/AERO.2019.8742147
https://doi.org/10.1109/AERO.2019.8742147
https://doi.org/10.1109/AERO.2019.8742147
https://doi.org/10.1109/AERO.2019.8742147
https://doi.org/10.2514/6.2020-0458
https://doi.org/10.2514/6.2020-0458
https://doi.org/10.2514/6.2020-0458
https://doi.org/10.2514/6.2020-0458
https://doi.org/10.2514/6.2020-1910
https://doi.org/10.2514/6.2020-1910
https://doi.org/10.2514/6.2020-1910
https://doi.org/10.2514/6.2020-1910
https://doi.org/10.1109/JAS.2014.7004667
https://doi.org/10.1109/JAS.2014.7004667
https://doi.org/10.1109/JAS.2014.7004667
https://doi.org/10.1109/JAS.2014.7004667
https://doi.org/10.1109/JAS.2014.7004667
https://doi.org/10.2514/1.G002357
https://doi.org/10.2514/1.G002357
https://doi.org/10.2514/1.G002357
https://doi.org/10.2514/1.G002357
https://doi.org/10.2514/1.G001491
https://doi.org/10.2514/1.G001491
https://doi.org/10.2514/1.G001491
https://doi.org/10.2514/1.G001491
https://doi.org/10.2514/1.G000566
https://doi.org/10.2514/1.G000566
https://doi.org/10.2514/1.G000566
https://doi.org/10.2514/1.G000566
https://doi.org/10.2514/1.G001309
https://doi.org/10.2514/1.G001309
https://doi.org/10.2514/1.G001309
https://doi.org/10.2514/1.G001309
https://doi.org/10.1109/TCST.2018.2866963
https://doi.org/10.1109/TCST.2018.2866963
https://doi.org/10.1109/TCST.2018.2866963
https://doi.org/10.1109/TCST.2018.2866963
https://doi.org/10.1109/TCST.2018.2866963
https://doi.org/10.1016/j.actaastro.2014.01.002
https://doi.org/10.1016/j.actaastro.2014.01.002
https://doi.org/10.1016/j.actaastro.2014.01.002
https://doi.org/10.1016/j.actaastro.2014.01.002
https://doi.org/10.1016/j.actaastro.2014.01.002
https://doi.org/10.1016/j.actaastro.2014.01.002
https://doi.org/10.1016/j.actaastro.2014.01.002
https://doi.org/10.1016/j.ast.2018.04.009
https://doi.org/10.1016/j.ast.2018.04.009
https://doi.org/10.1016/j.ast.2018.04.009
https://doi.org/10.1016/j.ast.2018.04.009
https://doi.org/10.1016/j.ast.2018.04.009
https://doi.org/10.1016/j.ast.2018.04.009
https://doi.org/10.1016/j.ast.2018.04.009
https://doi.org/10.1016/j.actaastro.2014.10.027
https://doi.org/10.1016/j.actaastro.2014.10.027
https://doi.org/10.1016/j.actaastro.2014.10.027
https://doi.org/10.1016/j.actaastro.2014.10.027
https://doi.org/10.1016/j.actaastro.2014.10.027
https://doi.org/10.1016/j.actaastro.2014.10.027
https://doi.org/10.1016/j.actaastro.2014.10.027
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58

